Synthesis and Antimicrobial Activity of Benzimidazole-Based Acetamide Derivatives

Mehlika Dilek ALTINTOP^{1,2,*}, Usama ABU MOHSEN³, Yusuf ÖZKAY¹, Rasime DEMIREL⁴, Zafer Asım KAPLANCIKLI¹

¹ Anadolu University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 26470 Eskişehir, Turkey

² Anadolu University, Graduate School of Health Sciences, 26470 Eskişehir, Turkey.

³ Al-Azhar University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Gaza, Palestine

⁴ Anadolu University, Faculty of Science, Department of Biology, 26470 Eskişehir, Turkey

In the current work, new benzimidazole-based acetamide derivatives (**2a-u**) were synthesized and screened for their in vitro antimicrobial activity. Among these derivatives, compounds **2b-2g** were found to be the most promising antibacterial agents against Pseudomonas aeruginosa. These compounds and streptomycin exhibited the same level of antibacterial activity with a MIC value of 125 μ g/mL. Compounds **2p**, **2s**, **2t** and **2u** were the most potent antifungal derivatives against Candida krusei with a MIC value of 125 μ g/mL when compared with ketoconazole (MIC= 62.5 μ g/mL). Compounds **2s** and **2u** also exhibited the highest inhibitory activity against Fusarium solani with a MIC value of 125 μ g/mL, whereas ketoconazole showed its antifungal activity with a MIC value of 62.5 μ g/mL.

Key words: Amide, Antimicrobial activity, Benzimidazole.

Benzimidazol Taşıyan Asetamit Türevlerinin Sentezi ve Antimikrobiyal Etkileri

Bu çalışmada, yeni benzimidazol taşıyan asetamit türevleri (**2a-u**) sentezlendi ve in vitro antimikrobiyal etkileri için tarandı. Bu türevler arasında, **2b-2g** bileşikleri Pseudomonas aeruginosa'ya karşı en ümit verici antibakteriyel maddeler olarak bulundu. Bu bileşikler ve streptomisin 125 μ g/mL'lik bir MIC değeri ile aynı düzeyde antibakteriyel etki gösterdiler. Ketokonazol (MIC = 62.5 μ g/mL) ile karşılaştırıldığında, **2p**, **2s**, **2t** ve **2u** bileşikleri 125 μ g/mL'lik bir MIC değeri ile Candida krusei'ye karşı en etkili antifungal türevlerdi. **2s** ve **2u** bileşikleri 125 μ g/mL'lik bir MIC değeri ile Fusarium solani'ye karşı da en yüksek inhibe edici aktiviteyi gösterirken, ketokonazol antifungal etkisini 62.5 μ g/mL'lik bir MIC değeri ile gösterdi.

Anahtar kelimeler: Amit, Antimikrobiyal etki, Benzimidazol.

*Correspondence: E-mail:mdaltintop@anadolu.edu.tr; Tel:+90-222-3350580/3772

INTRODUCTION

Infectious diseases pose a continuous and serious threat to human health and life. Despite the increasing number of currently available antimicrobial agents, the emergence of multidrug-resistant microorganisms remains a major challenge for the treatment of bacterial and fungal infections. Due to the failure of current treatments and deaths in immunocompromised patients, substantial attention has been focused on the mechanisms underlying drug resistance as well as on the development of new antimicrobial agents (1-5).

Imidazoles and their fused heterocyclic derivatives are building blocks for many bioactive compounds that play an important role in medicinal chemistry owing to their significant properties as therapeutics in clinical applications (6). Benzimidazole, a structural isostere of indole and purine nuclei, can be identified as 'Master Key' since it is an important pharmacophore and a privileged scaffold in medicinal chemistry. Due to its synthetic importance and broad spectrum of biological activities, benzimidazole has become an indispensable anchor for the development of new drugs (7-20).

Medicinal chemists have carried out considerable research on amide derivatives. Penicillins and cephalosporins, which possess cyclic amide as the main scaffold and acetamide moiety as the side chain, are widely used antibiotics for the treatment of systemic infections (21).

On the basis of these findings, herein we reported the synthesis and *in vitro* evaluation of benzimidazole-based acetamide derivatives as new antibacterial and antifungal agents.

EXPERIMENTAL

Chemistry

All chemicals were purchased from commercial suppliers and were used without further purification. Melting points were determined on an Electrothermal 9100 melting point apparatus (Weiss-Gallenkamp, Loughborough, UK) and were uncorrected. ¹H-NMR spectra were recorded on a Bruker spectrometer (Bruker, Billerica, USA), whereas mass spectra were recorded on a VG Ouattro Mass spectrometer (Agilent, Minnesota, USA). Elemental analyses were performed on a Perkin Elmer EAL 240 elemental analyser (Perkin-Elmer, Norwalk, USA). TLC was performed on Kieselgel 60 F₂₅₄ (Merck) layer using petroleum ether:ethyl acetate (3:1 v/v) as eluents.

General procedure for the synthesis of the compounds

2-Chloro-N-(1-methyl-1H-benzimidazol-2yl)acetamide (1)

Chloroacetyl chloride (0.1 mol) was added dropwise with stirring to a mixture of 1methyl-1*H*-benzimidazol-2-amine (0.1 mol) and triethylamine (0.1 mol) in THF (50 mL) at 0-5 °C. The solvent was evaporated under reduced pressure. The residue was washed with water to remove triethylamine hydrochloride and crystallized from ethanol (22).

N-(1-Methyl-1H-benzimidazol-2-yl)-2-(arylthio)acetamide derivatives (2a-j)

A mixture of 2-chloro-*N*-(1-methyl-1*H*-benzimidazol-2-yl)acetamide (1) (2 mmol) and aryl thiol (2 mmol) in acetone (10 mL) was stirred at room temperature for 10 hours in the presence of potassium carbonate (2 mmol) and filtered. The residue was washed with water and crystallized from ethanol.

N-(1-Methyl-1H-benzimidazol-2-yl)-2-[(4-methyl-4H-1,2,4-triazol-3-yl)thio]acetamide (2a)

¹H-NMR (400 MHz, DMSO- d_6): 3.59 (s, 3H), 3.76 (s, 3H), 4.24 (s, 2H), 7.20-7.50 (m, 4H), 8.54 (s, 1H), 12.40 (s, 1H). MS (ESI) (*m*/*z*): [M+1]⁺ 303. Anal. Calcd. for C₁₃H₁₄N₆OS: C, 51.64; H, 4.67; N, 27.80; Found: C, 51.63; H, 4.65; N, 27.79.

N-(1-Methyl-1H-benzimidazol-2-yl)-2-[(5methyl-1,3,4-thiadiazol-2-yl)thio]acetamide (2b)

¹H-NMR (400 MHz, DMSO- d_6): 2.64 (s, 3H), 3.59 (s, 3H), 4.07 (s, 2H), 7.20-7.51 (m, 4H), 12.40 (s, 1H). MS (ESI) (m/z): [M+1]⁺ 320.

Anal. Calcd. for $C_{13}H_{13}N_5OS_2$: C, 48.88; H, 4.10; N, 21.93; Found: C, 48.89; H, 4.12; N, 21.91.

N-(1-Methyl-1H-benzimidazol-2-yl)-2-[(1-methyl-1H-tetrazol-5-yl)thio]acetamide (2c)

¹H-NMR (400 MHz, DMSO-*d*₆): 3.56 (s, 3H), 3.99 (s, 3H), 4.25 (s, 2H), 7.19-7.48 (m, 4H), 12.40 (s, 1H).

MS (ESI) (*m*/*z*): [M+1]⁺ 304.

Anal. Calcd. for $C_{12}H_{13}N_7OS$: C, 47.51; H, 4.32; N, 32.32; Found: C, 47.50; H, 4.32; N, 32.34.

N-(1-Methyl-1H-benzimidazol-2-yl)-2-[(1phenyl-1H-tetrazol-5-yl)thio]acetamide (2d)

¹H-NMR (400 MHz, DMSO-*d*₆): 3.54 (s, 3H), 4.34 (s, 2H), 7.19-7.71 (m, 9H), 12.40 (s, 1H).

MS (ESI) (m/z): $[M+1]^+$ 366. Anal. Calcd. for C₁₇H₁₅N₇OS: C, 55.88; H, 4.14; N, 26.83; Found: C, 55.89; H, 4.11; N, 26.85.

N-(1-Methyl-1H-benzimidazol-2-yl)-2-[(benzimidazol-2-yl)thio]acetamide (2e) ¹H-NMR (400 MHz, DMSO-*d*₆): 3.53 (s, 3H), 4.34 (s, 2H), 6.90-7.66 (m, 8H), 12.60 (s, 1H), 12.80 (br, 1H). MS (ESI) (*m/z*): [M+1]⁺ 338.

Anal. Calcd. for C₁₇H₁₅N₅OS: C, 60.52; H, 4.48; N, 20.76; Found: C, 60.50; H, 4.49; N, 20.78.

N-(1-Methyl-1H-benzimidazol-2-yl)-2-[(5-chlorobenzimidazol-2-yl)thio]acetamide (2f)

¹H-NMR (400 MHz, DMSO- d_{δ}): 3.54 (s, 3H), 4.35 (s, 2H), 7.11-7.64 (m, 6H), 8.41 (s, 1H), 12.61 (s, 1H), 12.82 (br, 1H).

MS (ESI) (m/z): $[M+1]^+ 372$.

Anal. Calcd. for C₁₇H₁₄ClN₅OS: C, 54.91; H, 3.79; N, 18.83; Found: C, 54.90; H, 3.80; N, 18.80.

N-(1-Methyl-1H-benzimidazol-2-yl)-2-[(5nitrobenzimidazol-2-yl)thio]acetamide (2g)

¹H-NMR (400 MHz, DMSO- d_6): 3.57 (s, 3H), 4.35 (s, 2H), 7.14-8.07 (m, 6H), 8.28 (s, 1H), 12.62 (s, 1H), 12.83 (br, 1H).

MS (ESI) (m/z): $[M+1]^+$ 383.

Anal. Calcd. for $C_{17}H_{14}N_6O_3S$: C, 53.40; H, 3.69; N, 21.98; Found: C, 53.39; H, 3.68; N, 21.99.

N-(1-Methyl-1H-benzimidazol-2-yl)-2-[(5-chlorobenzothiazol-2-yl)thio]acetamide (2h)

¹H-NMR (400 MHz, DMSO-*d*₆): 3.60 (s, 3H), 4.35 (s, 2H), 7.21-8.12 (m, 7H), 12.55 (s, 1H).

MS (ESI) (m/z): $[M+1]^+$ 389.

Anal. Calcd. for C₁₇H₁₃ClN₄OS₂: C, 52.50; H, 3.37; N, 14.41; Found: C, 52.52; H, 3.35; N, 14.40.

N-(1-Methyl-1H-benzimidazol-2-yl)-2-[(5methoxybenzothiazol-2-yl)thio]acetamide (2i)

¹H-NMR (400 MHz, DMSO- d_6): 3.60 (s, 3H), 3.83 (s, 3H), 4.34 (s, 2H), 6.99-7.87 (m, 7H), 12.56 (s, 1H).

MS (ESI) (m/z): $[M+1]^+$ 385.

Anal. Calcd. for $C_{18}H_{16}N_4O_2S_2$: C, 56.23; H, 4.19; N, 14.57; Found: C, 56.22; H, 4.20; N, 14.56.

N-(1-Methyl-1H-benzimidazol-2-yl)-2-[(5-chlorobenzoxazol-2-yl)thio]acetamide (2j)

¹H-NMR (400 MHz, DMSO-*d*₆): 3.56 (s, 3H), 4.31 (s, 2H), 7.08-7.74 (m, 7H), 12.50 (s, 1H).

MS (ESI) (m/z): $[M+1]^+$ 373.

Anal. Calcd. for C₁₇H₁₃ClN₄O₂S: C, 54.77; H, 3.51; N, 15.03; Found: C, 54.76; H, 3.50; N, 15.05.

2-((1-Methyl-1H-benzimidazol-2-yl)amino)-2oxoethyl 4-substitutedpiperazine-1-carbodithioate (2k-2u)

A mixture of 2-chloro-N-(1-methyl-1Hbenzimidazol-2-yl)acetamide (1) (2 mmol) and appropriate sodium salt of N,Ndisubstituted dithiocarbamic acid (2 mmol) in acetone (10 mL) was stirred at room temperature for 8 hours and filtered. The residue was washed with water and crystallized from ethanol.

2-((1-Methyl-1H-benzimidazol-2-yl)amino)-2oxoethyl 4-(2-hydroxyethyl)piperazine-1carbodithioate (2k)

¹H-NMR (500 MHz, DMSO-*d*₆): 2.44 (2H, t, *J*=6.5 Hz, 6.0 Hz), 3.32-3.34 (4H, m), 3.53 (2H, t, *J*=6.0 Hz), 3.60 (3H, s), 3.97-4.26 (7H, m), 7.19-7.26 (2H, m), 7.44-7.49 (2H, m), 12.40 (1H, s).

MS (ESI) (m/z): $[M+1]^+$ 394.

Anal. Calcd. for $C_{17}H_{23}N_5O_2S_2$: C, 51.89; H, 5.89; N, 17.80; Found: C, 51.90; H, 5.88; N, 17.80.

2-((1-Methyl-1H-benzimidazol-2-yl)amino)-2oxoethyl4-(2-(dimethylamino)ethyl) piperazine-1-carbodithioate (21)

¹H-NMR (500 MHz, DMSO-*d*₆): 2.14 (6H, s), 2.34-2.37 (4H, m), 2.42-2.45 (4H, m), 3.60 (3H, s), 3.96-4.26 (6H, m), 7.19-7.27 (2H, m), 7.45-7.50 (2H, m), 12.40 (1H, s).

MS (ESI) (m/z): $[M+1]^+ 421$.

Anal. Calcd. for C₁₉H₂₈N₆OS₂: C, 54.26; H, 6.71; N, 19.98; Found: C, 54.25; H, 6.70; N, 19.98.

2-((1-Methyl-1H-benzimidazol-2-yl)amino)-2oxoethyl 4-(3-(dimethylamino)propyl) piperazine-1-carbodithioate (2m)

¹H-NMR (500 MHz, DMSO-*d*₆): 1.53-1.59 (2H, m), 2.10 (6H, s), 2.22 (2H, t, *J*=7.5 Hz, 7.0 Hz), 2.32 (2H, t, *J*=7.5 Hz), 2.45-2.46 (4H, m), 3.63 (3H, s), 3.97-4.26 (6H, m),

7.19-7.26 (2H, m), 7.45-7.50 (2H, m), 12.40 (1H, s).

MS (ESI) (m/z): $[M+1]^+ 435$

Anal. Calcd. for $C_{20}H_{30}N_6OS_2$: C, 55.27; H, 6.96; N, 19.34; Found: C, 55.26; H, 6.95; N, 19.36.

2-((1-Methyl-1H-benzimidazol-2-yl)amino)-2oxoethyl 4-(pyrimidin-2-yl)piperazine-1carbodithioate (2n)

¹H-NMR (500 MHz, DMSO-*d*₆): 3.60 (3H, s), 3.90-4.31 (8H, m), 6.70 (1H, t, *J*= 5.0 Hz, 4.5 Hz), 7.19-7.27 (2H, m), 7.45 (1H, d, *J*=7.5 Hz), 7.50 (1H, d, *J*=7.5 Hz), 8.41 (2H, d, *J*=5.0 Hz), 12.40 (1H, s).

MS (ESI) (m/z): $[M+1]^+ 428$.

Anal. Calcd. for C₁₉H₂₁N₇OS₂: C, 53.38; H, 4.95; N, 22.93; Found: C, 53.39; H, 4.94; N, 22.94.

2-((1-Methyl-1H-benzimidazol-2-yl)amino)-2oxoethyl 4-phenylpiperazine-1-carbodithioate (20)

¹H-NMR (500 MHz, DMSO-*d₆*): 3.31-3.33 (4H, m), 3.60 (3H, s), 4.10-4.40 (6H, m), 6.83 (1H, t, *J*=7.5 Hz, 7.0 Hz), 6.97 (2H, d, *J*=8.0 Hz), 7.21-7.27 (4H, m), 7.45-7.50 (2H, m), 12.40 (1H, s).

MS (ESI) (m/z): $[M+1]^+ 426$.

Anal. Calcd. for $C_{21}H_{23}N_5OS_2$: C, 59.27; H, 5.45; N, 16.46; Found: C, 59.26; H, 5.44; N, 16.48.

2-((1-Methyl-1H-benzimidazol-2-yl)amino)-2oxoethyl 4-(4-fluorophenyl)piperazine-1carbodithioate (2p)

¹H-NMR (500 MHz, DMSO-*d*₆): 3.31-3.34 (4H, m), 3.60 (3H, s), 4.14-4.37 (6H, m), 6.96-7.00 (2H, m), 7.05-7.11 (2H, m), 7.19-7.27 (2H, m), 7.45 (1H, d, *J*=7.5 Hz), 7.50 (1H, d, *J*=7.5 Hz), 12.40 (1H, s).

MS (ESI) (m/z): $[M+1]^+ 444$

Anal. Calcd. for C₂₁H₂₂FN₅OS₂: C, 56.86; H, 5.00; N, 15.79; Found: C, 56.85; H, 5.02; N, 15.77.

2-((1-Methyl-1H-benzimidazol-2-yl)amino)-2oxoethyl 4-(4-nitrophenyl)piperazine-1carbodithioate (2r)

¹H-NMR (500 MHz, DMSO-*d*₆): 3.60 (3H, s), 3.67-3.77 (4H, m), 4.21-4.31 (6H, m), 6.96 (2H, d, *J*=9.5 Hz), 7.20-7.27 (2H, m), 7.45

(1H, d, *J*=7.5 Hz), 7.50 (1H, d, *J*=7.5 Hz), 8.10 (2H, d, *J*=9.5 Hz), 12.40 (1H, s). MS (ESI) (*m*/*z*): [M+1]⁺ 471

Anal. Calcd. for $C_{21}H_{22}N_6O_3S_2$: C, 53.60; H, 4.71; N, 17.86; Found: C, 53.59; H, 4.70; N, 17.85.

2-((1-Methyl-1H-benzimidazol-2-yl)amino)-2oxoethyl 4-(4-methoxyphenyl)piperazine-1carbodithioate (2s)

¹H-NMR (500 MHz, DMSO-*d*₆): 3.12-3.18 (4H, m), 3.60 (3H, s), 3.70 (3H, s), 4.14-4.37 (6H, m), 6.85-6.87 (2H, m), 6.94-6.96 (2H, m), 7.20-7.29 (2H, m), 7.44-7.50 (2H, m), 12.40 (1H, s).

MS (ESI) (m/z): $[M+1]^+ 456$

Anal. Calcd. for $C_{22}H_{25}N_5O_2S_2$: C, 58.00; H, 5.53; N, 15.37; Found: C, 58.02; H, 5.51; N, 15.36.

2-((1-Methyl-1H-benzimidazol-2-yl)amino)-2oxoethyl 4-benzylpiperazine-1-carbodithioate (2t)

¹H-NMR (500 MHz, DMSO-*d*₆): 2.46-2.48 (4H, m), 3.52-3.53 (2H, m), 3.66 (3H, s), 4.17-4.24 (6H, m), 7.08-7.13 (2H, m), 7.26-7.41 (7H, m), 12.40 (1H, s).

MS (ESI) (m/z): $[M+1]^+$ 440

Anal. Calcd. for $C_{22}H_{25}N_5OS_2$: C, 60.11; H, 5.73; N, 15.93; Found: C, 60.10; H, 5.72; N, 15.92.

2-((1-Methyl-1H-benzimidazol-2-yl)amino)-2oxoethyl 4-(4-methylbenzyl)piperazine-1carbodithioate (2u)

¹H-NMR (500 MHz, DMSO-*d*₆): 2.29 (3H, s), 2.44-2.46 (4H, m), 3.48-3.50 (2H, m), 3.60 (3H, s), 4.26-4.30 (6H, m), 7.14 (2H, d, *J*=8.0 Hz), 7.17-7.25 (4H, m), 7.44 (1H, d, *J*=7.5 Hz), 7.49 (1H, d, *J*=7.5 Hz), 12.40 (1H, s).

MS (ESI) (m/z): $[M+1]^+ 454$

Anal. Calcd. for $C_{23}H_{27}N_5OS_2$: C, 60.90; H, 6.00; N, 15.44; Found: C, 60.91; H, 6.01; N, 15.45.

Microbiology

Antibacterial assay

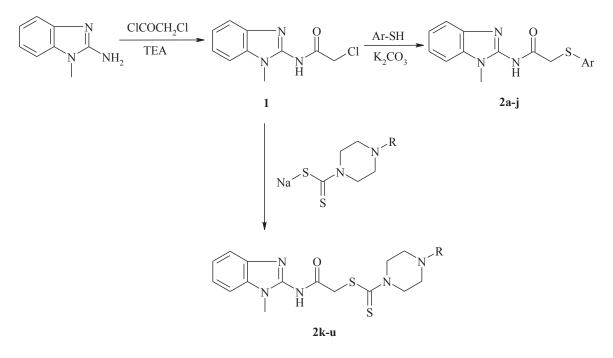
Microbroth dilution method was carried out to evaluate antimicrobial activity of the compounds (**2a-u**) (23). Tested bacterial strains were *Micrococcus luteus* (NRLL B-4375), *Bacillus subtilis* (NRRL NRS-744), Pseudomonas aeruginosa (ATCC 27853), Staphylococcus aureus (NRRL B-767). Escherichia coli (ATCC 25922), Listeria monocytogenes (ATCC 7644). The stock solutions of the samples were prepared in dimethyl sulfoxide (DMSO, Merck). Dilution series using sterile distilled water were prepared from 4 mg/mL to 0.0039 mg/mL in micro-test tubes that were transferred to 96well microtiter plates as 100 µL. Overnightgrown bacterial suspensions in doublestrength Mueller-Hinton Broth were standardized to 10⁸ CFU/mL using McFarland No: 0.5 standard solutions. 100 µL of each microorganism suspension was then added into the wells. The last well-chain without a microorganism was used as a negative control. Sterile distilled water and the medium served as a positive growth control. After incubation at 37°C for 18-24 h, antimicrobial activity was detected by spraying of 0.5 % triphenyl tetrazolium chloride (TTC, Merck) aqueous solution.

Antifungal assay

The antifungal activities of the compounds (2a-u) were tested using the microbroth dilution method with some modifications (23, 24). Tested fungal strains were Aspergillus parasiticus (NRRL 465), Aspergillus flavus (NRRL 3537), Aspergillus niger (ATCC 1094), Fusarium solani (NRRL 13414), Candida glabrata (Clinical Isolate, Eskişehir Osmangazi University, Faculty of Medicine, Eskisehir, Turkey), Candida tropicalis (NRLL Y-12968), Candida krusei (NRLL Y-7179), Candida parapsilosis (NRLL Y-12696). The stock solutions of the samples were prepared in DMSO. Dilution series using sterile distilled water were prepared from 4 mg/mL to 0.0039 mg/mL in micro-test tubes that were transferred to 96-well microtiter plates as 100 µL. Filamentous fungal strains grown on Potato Dextrose Agar (PDA) at 25 °C for 5 days were suspended in double-strength Potato Dextrose Broth (PDB) and then standardized to 10⁵ spores/mL. Yeast strains grown on Sabouraud Dextrose Agar (SDA) at 37 °C for overnight were suspended in doublestrength Sabouraud Dextrose broth (SDB) and then standardized to 10⁸ CFU/mL using McFarland No: 0.5 standard solutions. 100 µL of each cell suspension was then added into

the wells. The last well-chain without a fungus was used as a negative control. Sterile distilled water and the medium served as a positive growth control. After incubation at 25 °C for filamentous fungi and 37 °C for yeasts for 48-72 h, antifungal activity was detected by investigation of mycelia growing and turbidity under stereo microscope.

Minimum inhibitory concentration (MIC) was defined as the lowest concentration of a compound that inhibit the visible growth of a microorganism, as indicated by the TTC staining and investigation under stereo microscope. Streptomycin was used as a standard antibacterial agent, whereas ketoconazole was used as an antifungal agent.


RESULTS AND DISCUSSION

The synthesis of compounds 2a-u followed the general pathway outlined in Scheme 1. Initially, 2-chloro-*N*-(1-methyl-1*H*benzimidazol-2-yl)acetamide (1) was obtained by the reaction of 1-methyl-1*H*-benzimidazol-2-amine with chloroacetyl chloride in the presence of triethylamine.

N-(1-Methyl-1*H*-benzimidazol-2-yl)-2-(arylthio)acetamide derivatives (**2a-j**) and 2-((1-methyl-1*H*-benzimidazol-2-yl)amino)-2oxoethyl 4-substitutedpiperazine-1-carbo-

dithioate derivatives (2k-2u) were synthesized via the treatment of 2-chloro-N-(1-methyl-1Hbenzimidazol-2-yl)acetamide (1) with aryl thiols and appropriate sodium salts of N,Ndisubstituted dithiocarbamic acids, respectively. The spectral data and elemental analysis results of the synthesized compounds (2a-u) were in agreement with the proposed structures. Yields and melting points of the compounds are given in Table 1.

The compounds were tested *in vitro* against various pathogenic bacteria and fungi species. Among bacteria species, *P. aeruginosa* was the most susceptible bacterium to compounds **2b-2g.** These compounds and streptomycin exhibited the same level of antibacterial activity with a MIC value of 125 μ g/mL, whereas other derivatives showed their antibacterial activity against *P. aeruginosa* with a MIC value of 250 μ g/mL (Table 2).

Scheme 1. The synthetic route for the preparation of compounds 2a-u.

Compound	Ar	R	Yield (%)	М.р. (°С)
2a	4-Methyl-4H-1,2,4-triazol-3-yl	-	75	188
2b	5-Methyl-1,3,4-thiadiazol-2-yl	-	83	205
2c	1-Methyl-1 <i>H</i> -tetrazol-5-yl	-	85	203
2d	1-Phenyl-1 <i>H</i> -tetrazol-5-yl	-	82	212
2e	Benzimidazol-2-yl	-	79	146
2f	5-Chlorobenzimidazol-2-yl	-	84	158
2g	5-Nitrobenzimidazol-2-yl	-	87	177
2h	5-Chlorobenzothiazol-2-yl	-	78	231
2i	5-Methoxybenzothiazol-2-yl	-	73	208
2j	5-Chlorobenzoxazol-2-yl	-	77	333
2k	-	2-Hydroxyethyl	82	82
21	_	2-	76	76
2m	-	(Dimethylamino)ethyl 3- (Dimethylamino)propyl	67	67
2n	-	2-Pyrimidinyl	68	68
20	-	Phenyl	78	78
2p	-	<i>p</i> -Fluorophenyl	65	65
2r	-	<i>p</i> -Nitrophenyl	77	77
2s	-	<i>p</i> -Methoxyphenyl	70	70
2t	-	Benzyl	75	75
2u	-	<i>p</i> -Methylbenzyl	71	71

Table 1. Yields and melting points of compounds 2a-u

Compounds **2p**, **2s**, **2t** and **2u** were the most effective anticandidal derivatives against *C. krusei* with a MIC value of 125 μ g/mL when compared with ketoconazole (MIC= 62.5 μ g/mL). Furthermore, compounds **2s** and **2u** showed the highest antifungal activity against *F. solani* with a MIC value of 125 μ g/mL, whereas ketoconazole exhibited its antifungal activity with a MIC value of 62.5 μ g/mL (Table 3).

It can be concluded that some arylthiosubstituted derivatives (2b-2g) were more effective against *P. aeruginosa* than dithiocarbamate derivatives, whereas some dithiocarbamate-substituted derivatives (2p,2s, 2t and 2u) were more effective against *C. krusei* than arylthio-substituted derivatives. agents, we described the synthesis of a series of benzimidazole-based acetamide derivatives (**2a-u**) and focused on their *in vitro* antibacterial and antifungal effects.

Among these derivatives. arylthiosubstituted compounds 2b-2g can be identified as the most promising antibacterial agents against P. aeruginosa with a MIC value of 125 µg/mL when compared with streptomycin (MIC= 125 $\mu g/mL$). Dithiocarbamate-substituted compounds 2p, 2s, 2t and 2u exhibited the most potent antifungal activity against C. krusei with a MIC value of 125 µg/mL. Compounds 2s and 2u were also the most effective antifungal derivatives against F. solani with a MIC value of 125 µg/mL.

CONCLUSION

In an effort to develop potent antimicrobial

Table 2. Antibacterial activity of compounds **2a-u** as MIC values (µg/mL)

Compound	Α	В	С	D	E	F
2a	250	250	250	250	250	250
2b	250	250	250	250	250	125
2c	250	250	500	250	500	125
2d	250	250	500	250	500	125
2e	250	250	250	250	250	125
2 f	250	250	250	250	500	125
2g	250	250	250	125	250	125
2h	250	250	250	250	250	250
2i	250	250	250	250	250	250
2ј	250	250	500	250	250	250
2k	250	250	250	125	250	250
21	250	250	250	250	250	250
2m	250	250	250	250	250	250
2n	250	250	500	250	250	250
20	250	250	250	250	250	250
2p	250	250	250	250	500	250
2r	250	250	250	250	250	250
2s	250	250	250	250	250	250
2t	250	250	250	250	250	250
2u	250	250	250	250	500	250
Streptomycin	7.81	15.625	15.625	31.25	31.25	125

A: *L. monocytogenes* (ATCC 7644), **B**: *M. luteus* (NRLL B-4375), **C**: *B. subtilis* (NRRL NRS-744), **D**: *E. coli* (ATCC 25922), **E**: *S. aureus* (NRRL B-767), **F**: *P. aeruginosa* (ATCC 27853).

Compound	Α	В	С	D	Е	F	G	Н
2a	250	250	250	250	250	250	250	250
2b	250	250	250	250	250	250	250	250
2c	250	250	250	250	250	250	250	250
2d	250	250	250	250	250	250	250	250
2e	250	250	250	250	250	250	250	250
2f	250	250	250	250	250	250	250	250
2g	250	250	250	250	250	250	250	250
2h	250	250	250	250	250	250	250	250
2i	250	250	250	250	250	250	250	250
2j	250	250	250	250	250	250	250	250
2k	250	250	250	250	250	250	250	250
21	250	250	250	250	250	250	250	250
2m	250	250	250	250	250	250	250	250
2n	250	250	250	250	250	250	250	250
20	250	250	250	250	250	250	250	250
2p	250	250	250	250	125	125	125	125
2r	250	250	250	250	250	250	250	250
2s	250	125	125	125	125	125	125	125
2t	250	250	250	250	125	125	125	125
2u	125	125	125	125	125	125	125	125
Ketoconazole	31.25	15.62	7.81	62.5	31.25	7.81	62.5	7.81

Table 3. Antifungal activity of compounds 2a-u as MIC values (µg/mL)

A: A. niger (ATCC 1095), B: A. flavus (NRRL 3537), C: A. parasiticus (NRRL 465), D: F. solani (NRRL 13414), E: C. glabrata (Clinical Isolate, Eskişehir Osmangazi University, Faculty of Medicine, Eskişehir, Turkey), F: C. tropicalis (NRLL Y-12968), G: C. krusei (NRLL Y-7179), H: C. parapsilosis (NRLL Y-12696).

REFERENCES

- 1. Ghannoum MA, Rice LB. Antifungal Agents: Mode of Action. Mechanisms of Resistance and Correlation of These Mechanisms with Bacterial Resistance, Clin Microbiol Rev 12(4), 501-517, 1999.
- Moellering RC. Discovering new antimicrobial agents. Int J Antimicrob Agents 37, 2-9, 2011.
- Kathiravan MK, Salake AB, Chothe AS, Dudhe PB, Watode RP, Mukta MS, Gadhwe S. The biology and chemistry of antifungal agents: A review. Bioorg Med Chem 20, 5678-5698, 2012.
- Pfaller MA, Diekema DJ. Epidemiology of Invasive Candidiasis: a Persistent Public Health Problem. Clin Microbiol Rev 20(1), 133-163, 2007.
- Canuto MM, Rodero FG. Antifungal drug resistance to azoles and polyenes. Lancet Infect Dis 2, 550-563, 2002.
- Sheehan DJ, Hitchcock CA, Sibley CM. Current and Emerging Azole Antifungal Agents. Clin Microbiol Rev 1999; 12: 40-79.
- 7. Boiani M, González M. Imidazole and Benzimidazole Derivatives as

Chemotherapeutic Agents. Mini-Rev Med Chem 5(4), 409-424, 2005.

- Güven ÖÖ, Erdoğan T, Göker H, Yildiz S. Synthesis and antimicrobial activity of some novel phenyl and benzimidazole substituted benzyl ethers. Bioorg Med Chem Lett 17(8), 2233-2236, 2007.
- Özkay Y, Tunalı Y, Karaca H, Işıkdağ I. Antimicrobial activity and a SAR study of some novel benzimidazole derivatives bearing hydrazone moiety. Eur J Med Chem 45, 3293-3298, 2010.
- 10. Özkay Y, Tunalı Y, Karaca H, Işıkdag I. Antimicrobial Activity of a New Combination System of Benzimidazole and Various Azoles. Arch Pharm Chem Life Sci 11, 264–271, 2011.
- 11. Bansal Y, Silakari O. The therapeutic journey of benzimidazoles: A review. Bioorg Med Chem 20, 6208-6236, 2012.
- 12. Patel RV, Patel PK, Kumari P, Rajani DP, Chikhalia KH. Synthesis of benzimidazolyl-1,3,4-oxadiazol-2ylthio-N-phenyl (benzothiazolyl)acetamides as antibacterial, antifungal and antituberculosis agents. Eur J Med Chem 53, 41-51, 2012.
- 13. El Rashedy AA, Aboul-Enein HY. Benzimidazole Derivatives as Potential

Chemotherapeutic Agents. Curr Drug Ther 8, 1-14, 2013.

- 14. Barot KP, Nikolova S, Ivanov I, Ghate MD. Novel Research Strategies of Benzimidazole Derivatives: A Review. Mini Rev Med Chem 13(10), 1421-1447, 2013.
- Fei F, Zhou Z. New substituted benzimidazole derivatives: a patent review (2010–2012). Expert Opin Ther Pat 23(9), 1157-1179, 2013.
- 16. Worachartcheewan A, Nantasenamat C, Isarankura-Na-Ayudhya C, Prachayasittikul V. Predicting antimicrobial activities of benzimidazole derivatives. Med Chem Res 22, 5418–5430, 2013.
- Zhou B, Li B, Yi W, Bu X, Ma L. Synthesis, antioxidant, and antimicrobial evaluation of some 2-arylbenzimidazole derivatives. Bioorg Med Chem Lett 23, 3759-3763, 2013.
- 18. Zhang H-Z, Damu GLV, Cai G-X, Zhou C.-H. Design, synthesis and antimicrobial evaluation of novel benzimidazole type of Fluconazole analogues and their synergistic effects with Chloromycin, Norfloxacin and Fluconazole. Eur J Med Chem 64, 329-344, 2013.
- 19. Shah K, Chhabra S, Shrivastava SK, Mishra P. Benzimidazole: a promising pharmacophore. Med Chem Res 22, 5077-5104, 2013.
- 20. Joshi D, Parikh K. Synthesis and evaluation of novel benzimidazole derivatives as

antimicrobial agents. Med Chem Res 23, 1290-1299, 2014.

- Lemke TL, Williams DA, Foye's Principles of Medicinal Chemistry, pp. 1028-1083, Lippincott Williams & Wilkins, Baltimore and Philadelphia, 2008.
- 22. Wang X, Bhatia PA, Daanen JF, Latsaw SP, Rohde J, Kolasa T, Hakeem AA, Matulenko MA, Nakane M, Uchic ME, Miller LN, Chang R, Moreland RB, Brioni JD, Stewart AO. Synthesis and evaluation of 3-aryl piperidine analogs as potent and efficacious dopamine D₄ receptor agonists. Bioorg Med Chem 13(15), 4667-4678, 2005.
- 23. Winn WC, Allen SD, Janda WM, Koneman EW, Procop GW, Schreckenberger PC, Woods GL, Koneman's Color Atlas and Textbook of Diagnostic Microbiology, Lippincott Williams & Wilkins, Baltimore and Philadelphia, 2006.
- 24. Espinel-Ingroff A. In Vitro Fungicidal Activities of Voriconazole, Itraconazole, and Amphotericin B against Opportunistic Moniliaceous and Dematiaceous Fungi. J Clin Microbiol 39(3), 954-958, 2001.

Received: 05.06.2014 Accepted: 18.09.2014 Mehlika Dilek ALTINTOP, Usama Abu MOHSEN, Yusuf ÖZKAY, Rasime DEMİREL, Zafer Asım KAPLANCIKLI