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INTRODUCTION 
In 1992, the focused molecule in this review was first 
reported, where there is a protein which was called NK4, 
which is extremely articulated in activated-T and NK cells. 
This protein was rapidly up-regulated after the stimulation by 
phytohaemaglutinin a lectin that is primary for activation of 
T-cells in human peripheral blood mononuclear cells (PBMCs). 
In 2005, NK4 was found to be one of the most up-regulated 
genes using microarray expertise and interleukin (IL)-18 
receptive cell unit.1 After that, two other innovative integrins 
of IL-32 were established in IL-32 mRNA transcript and  
IL-32ζ, but IL-32β appears superabundant.2 IL-32 different 
isoforms are produced by splicing of isoform IL-32γ pre-mRNA. 
Many reports have explained that IL-32 different transcripts 
present both in vitro3 and in vivo.4 Its remnants that, by which 
means, IL-32γ mRNA copies are replicated and incomplete body 
cells process is the same. Keeping in mind the cell stimulation 

and cell demise, IL-32γ is the utmost leading IL-32 isoform, 
which explains why IL-32γ explodes into less injurious IL-32 
isoforms, such as IL-32β and α.4 IL-32 isoform differential 
potency was explained in many reports, however, basis of 
potency differences between the isoforms remain unknown. In 
the explanation of this process, the variance between the extent 
of the integrins from 14.9 kDa (IL-32α) to 26.7 kDa (IL-32γ), so 
that the isoform’s tertian assembly can be explained.5

Expression and regulation of osteoclast
Inlacunarily, bone resorption is the specific function of 
multinucleated osteoclasts cells that originate from the 
hematopoietic lineage (colony forming unit-granulocyte–
macrophage; CFU-GM).6 The presence of KB ligand nuclear 
factor by receptor activator and colony-stimulating factor of 
macrophages is compulsory for the discrepancy of osteoclasts 
by circulating hematopoietic predecessors.7 The site triggers 
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ABSTRACT

The recently explained cytokine, which is produced after the stimulation of interferon (IFN)-c, interleukin (IL)-2, and IL-18 is IL-32, has pro-
inflammatory IFN-c, IL-2 and IL-18 are IL-32 mediator’s properties that are generally entailed in many diseases, including infections, cancer, 
and chronic inflammation. After the initial statement in 2005, it promoted the osteoclast precursor’s differentiation into TRAcP plus VNR plus 
multinucleated cells that express explicit osteoclast indicators. Furthermore, the loss of bone resorption might be accredited because of the 
collapse of the multinucleated cells, which are produced of the reaction to IL-32 to direct factoring that is ultimately essential for attaching the 
cells for bone resorption. Thus, in conclusion, IL-32, the pro-inflammatory mediator, has an important and indirect role in regulating osteoclast 
differentiation. In bone disorder’s pathophysiology, critical role of IL-32 needs more scientific evidence to develop a rational treatment protocol. 
IL-32 can become a potent mediator of active osteoclast generation in the presence of receptor activator of NF-κB ligand (RANKL). This novel 
cytokine can introduce more favorable conditions for osteoclastogenesis in the rheumatic arthritis by increasing the RANKL and osteoprotegerin 
ratio in fibroblast-like synoviocytes. 
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for nuclear feature κB ligand (RANKL) is part of tumor necrosis 
factor (TNF), which is present on T-cells, osteoblasts, and 
binds with its receptor, a receptor activator for nuclear 
factor-κB (RANK), which are articulated on precursors of 
osteoclast.8 Activation of different intracellular pathways such 
as mitogen-activated protein kinase, nuclear factor activated 
T-cells (NFATc1), Akt, and nuclear factor-κB (NF-κB) pathways 
has been described as a result of RANK binding with RANKL. 
Osteoprotegerin (OPG), which acts like RANKL decoy receptor, 
causes the stimulation of resorbing activity by osteoclasts 
and blocks the differentiation of osteoclast-mediated by 
RANKL.9,10 Although RANKL is one of the critical factors for 
osteoclastogenesis, several pro-inflammatory cytokines such 
as IL-8, TNF-α, and LIGHT proves the RANKL independent 
mechanisms.11

Multiple cell interaction evolute of rheumatoid arthritis (RA)
Approximately 0.5% adult population is affected by rheumatoid 
arthritis (RA) worldwide, which is the main reason for disability. 
RA can be defined as an enduring inflammatory disease, in 
which advanced joint annihilation occur including articular 
cartilage damage, which is caused by inflammatory cells 
that are chondrocytes and activated synovial fibroblasts. The 
factors that produced in the affected joints and a broad array of 
cytokines control the arthritis evolution. The anti-inflammatory 
cytokines i.e. IL-10 and transforming growth factor-beta (TGF-β) 
are exceeded by pro-inflammatory molecules level, particularly 
monokines TNF-α and IL-1b.12 The importance of macrophages 
and cytokine production in RA is clearly explained by biological 
therapies that were directing TNF-α, targeting IL-1 and IL-6.13 
However, these treatments, when given repeatedly, achieve 
only brief clinical responses. Furthermore, approximately 40% 
of patients with 50% response reach American College of 
Rheumatology.14

Fibroblast-like synoviocytes (FLS) cultures
In sub confluence (70%), FLS were grown which contained 
complete medium i.e. 10% fetal calf serum in addition to RPMI 
1640, 500 units/mL of penicillin, and 100 lg/mL streptomycin 
in a culture flask. From 3rd passage, all the experiments 
were performed using FLS. At this time, there were 0-2% 
contaminating macrophages, natural killer cells, and 
lymphocytes.15

RNA preparation
To eliminate genomic DNA contamination, DNase I are treated 
with entire RNA, which is obtained after culturing cells in RLT® 
RNA extraction buffer (Rneasy, Qiagen kit). By using RNA kit 
6000 Lab Chip (Agilent Technologies) and a Bio-analyzer 2100, 
the unity and clarity of the entire RNA, and cRNA, were analyzed. 
The ratio of total RNA with 28S/18S >1.7 was only used. Through 
NanoDrop (Nanodrop Technologies) concentrations of cRNA 
were calculated.16

cRNA production and probe range hybridization
As per the producer’s protocol (GeneChip® Expression Analysis 
Technical Manual, Rev.5, Affymetrix Inc., 2004) through the 
GeneChip Expression 3’ Amplification One-Cycle Target Tagging 

and Controlling Components, cRNA preparation was carried out 
with 3 lg of entire RNA, then combine with the human genetic 
material U133 plus 2.0. Briefly, in an initial-strand cDNA 
composite reaction using a T7-Oligo(dT) protagonist primer, the 
entire RNA was initially inverse transcribed. Then, the double-
stranded cDNA was washed in second-strand cDNA synthesis 
that is facilitated by RNase H and is active as a prototype in 
the in vitro transcript reaction (IVT).17 In the presence of a 
biotinylated nucleotide analog and T7 RNA polymerase, an IVT 
reaction was performed. Then, biotinylated cRNA marks were 
washed up, broken into pieces, and hybridized with GeneChip 
expression arrays. Then, using Affymetrix Fluidics Station 
450 (Affymetrix, Inc.), it was washed and stained and then the 
reviewed ranges were perused into the Affymetrix GeneChip 
Scanner 3000.

FLS gene express model 
Using GeneChip Human Genome U133A plus 2.0 (Affymetrix, 
Santa Clara, CA, USA), microarrays evaluated the genetic 
appearance profiles. Gene expression was evaluated by 
cultivated FLS obtained of 8 and 9 patients with RA and 
OA, respectively. For further analysis, outcomes from 241 
investigations on behalf of 171 different cytokines and their 
particular receptors. The selected genes, whose appearance 
were diverse and approximately 1.6 times among the FLS of 
two disorders, had a p value of up to 0.05.18

Microarray scrutiny
In gene spring, the stated raw details were computed with 
the GC-RMA File preprocessor. Specific probe data stored in 
Affymetrix CEL files were used using the GC-RMA algorithm. 
With Genespring 7.2, raw data processing, data analysis, and 
normalization were performed. The value of each gene was set 
to 1 in different conditions and it was ensured using GeneSpring 
normalization (“per gene: normalize the median”). This means 
that those genes that do not alter in different conditions have a 
value of 1 for normalization expression that allow easy detection 
of distinctive expressed genes visually.

The absence of sRANKL IL-32 inspires the discrepancy of 
supporter PBMCs into multinucleated TRAcP + and VNR + cells 
Now it is thought that M-CSF and RANKL are two crucial 
aspects that are supplied by osteoclasts, which are vital for the 
maturation and discrepancy of precursors of osteoclasts.19-22 
However, the mice defective by M-CSF (op/op) exhibit an 
osteopetrotic appearance that could be voluntarily converse 
with time and suggest that there is a substitute osteoclastic 
trail that exists.22

Lacking M-CSF, vascular endothelial growth factor, hepatocyte 
growth factor, and Flt3 ligand all have revealed support to 
osteoclast creation.21 Moreover, the mice demonstrate an 
osteopetrotic appearance triggered by a whole loss of osteoclast 
in their bones having a deficiency of either RANKL or its receptor 
RANK.22 If there are no osteoclasts detected in the bones of the 
mice that are flawed in RANKL or RANK, it might not happen 
due to the total disaster of osteoclastogenesis. RANKL as a 
significant and endurance aspect for modified osteoclasts23 
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and in the mice deficient with RANKL or RANK, the observed 
phenotype can be explained by the idea that differentiation 
is diminished osteoclast superimposed on the summarized 
lifecycle.24 As such, in the existence of a large amount of OPG 
that is an inhibitor of interactions of RANKL-RANK, it has been 
reported that a substitute RANKL-independent pathway (e.g. 
LIGHT, TGF-β and TNF-α) supports osteoclastogenesis.25 The 
ground aspect of the osteoimmunology explained that T-cells, 
which are activated straight regulate bone resorption and 
osteoclastogenesis,26 and T-cell products i.e., IL-17, TWEAK, 
GM-CSF, and IFN-c, which can modulate the establishment of 
osteoclasts.27 This existing study pursued to determine a part of 
IL-32, having the representation of pro-inflammatory cytokine 
and participating in an assortment of inflammatory syndromes 
by osteoclast activation and differentiation (Figures 1, 2).

TNF and osteoclast activation 
It has been described that TNF receptor-associated factor-6 
(TRAF-6) is imperative for osteoclast stimulation, i.e., lacunar 
bone resorption and there is a composite part of IFN-c in 
osteoclastogenesis. They show that strong reluctance of 
RANKL-induced activation occurs due to fast degradation 
of TRAF-6 by IFN-c. Therefore, we hypothesized that due to 
TRAF-6 degradation, the IL-32 single or in combination with 
soluble RANKL showed inhibitory outcome. However, we 
found and were surprised that TRAF6 is not destroyed but 
is overexposed, when treated with IL-32 related to RANKL. 
Recently, Yao et al.28 have shown IFN-c shows a “direct” anti-
resorptive outcome by reducing the distinction of osteoclasts. 
Therefore, by stimulating T-cells IFN-c can act “indirectly” 
as a pro-resorptive feature to direct RANKL and TNF-α.29 In 
this current study, we use PBMCs as a basis of pioneers of 
osteoclasts and significantly cells were cleansed completely 
to abolish non-adherent cells (B & T-cells), it is reasonable 
that few T-cells might be existing in the culture and donated to 
osteoclastogenesis.30 This supposition is also strengthened by 
indication, which explains that the decrease in size and number 
of multinucleated cells newly-synthesised due to excessive 
accumulation of OPG in the IL-32-treated cultures.

Therapeutic techniques or process 
Osteoclast differentiation was induced by IL-32 is somewhat 
autonomous of the RANK/RANKL pathway. Although the 
freeing of pro-inflammatory mediators that were increased by 
IL-32 have a positive influence on osteoclastogenesis, it had a 
straight inhibitor consequence in vitro osteoclast instigation and 
it cannot induce these recently-prepared multinucleated cells 
activation into bone-resorbing osteoclasts.31-33 It is important to 
notice that IL-32 has a straight influence over further cell types 
i.e., epithelial cells, natural killer cells, T-cells, and monocytes. 
Downstream pathways are not fully interpreted that involved in 
osteoclasts in return to IL-32. NF-κB and JNK trail activation 
are severely increased by PBMC handling of M-CSF/RANKL or 
M-CSF/IL-32 compared to cultures that are treated with M-CSF. 
However, Akt pathway activation appeared more complex. Akt 
pathways are strongly activated by M-CSF/IL-32 or M-CSF 
treatments compared with M-CSF/RANKL. 

CONCLUSION 
In conclusion, IL-32, the pro-inflammatory mediator, has 
an important and indirect role in regulating osteoclast 
differentiation. In bone disorder’s pathophysiology, critical role 
of IL-32 needs more scientific evidence to develop a rational 

Figure 1. The graphic illustration of downriver trails triggered by receptor 
activator of NF-κB ligand (RANKL). Inconsistency detected in RANKL 
signaling trails; increased ERK1/2 activation may lead to the activation of 
downriver goals, which, in fact, can subsidize the incapacity of cells to 
expose the F-actin ring

Figure 2. The graphic illustration of downriver trails triggered by IL-32. The 
inconsistency detected among IL-32; Akt activation by IL-32 may lead to the 
activation of downriver goals, which, in fact, can subsidize the incapacity of 
cells to expose F-actin ring and resorb in reaction to IL-32
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treatment protocol. IL-32 can become a potent mediator of 
active osteoclast generation in the presence of RANKL. This 
novel cytokine can introduce more favorable conditions for 
osteoclastogenesis in the rheumatic arthritis by increasing the 
RANKL and OPG ratio in fibroblast-like synoviocytes. 
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