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INTRODUCTION
Feeding behavior and energy consumption have been considered 
important health concerns in humans. In particular, plant-
based diets have gained scientists’ attention in recent decades.  
Plant ingredients have been widely used in the food industry 
to control appetite, body weight, metabolic disturbances, and 
energy intake.1,2

The plant hormone methyl jasmonate (MJ) was initially isolated 
from the floral scent of jasmine plant. The growing body of 
evidence shows its value in modulating neurologic processes 

in animals.3-6 It is structurally similar to anti-inflammatory 
prostaglandins (PGE2), which could decrease the inductin of  
interleukin-6 (IL-6), nitric oxide, and tumor necrosis factor 
(TNF-α).7 It has been shown that MJ attenuates depression-
like behavior,  anxiolytic responses, and learning and memory 
decline in rodents.3,5,8  Moreover, MJ was able to decrease 
stress oxidative indices in the brains of mice.9,10

In addition, jasmonate is usually ingested with plant nutrients 
and may elicit physiological competence or toxic effects when 
ingested at high dosages.11 IMJ is present in plant foods in 
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different concentrations, so its intake is strongly influenced by 
cultural and social nutritional behaviors.12

In different areas of the brain, neuromodulators are also 
intricately involved in energy expungers and food intake.13,14 

Studies have emphasized the key role of hypothalamic orexin 
peptides, i.e. orexin-A and orexin B, in appetite and metabolic 
procedures. These neuropeptides act by activating two 
G-protein-coupled receptors, including the orrin 1 receptor 
(Orx1R) and orrin 2 receptor (Orx2R). Orexin-A is equal at both 
receptors; however, orexin-B exhibits more competence to 
Orx2R.  It has been shown that diet intervention is related to 
changes in OrxR expression in the rat brain.15,16 

Although MJ is found in most dietary plant sources,17 there is a 
lack of study to report the capability of MJ to modulate feeding 
behavior. This study was designed to evaluate, whether central 
administration of MJ can modulate feeding-associated behavior 
in rats or not. Moreover, alteration in OrxRs expression in the 
hypothalamus was evaluated in MJ-infused rats.

MATERIALS AND METHODS 
Animal
Adult male Wistar rats weighing 230-270 g were divided into 
different groups. The rats were caged under controlled light/
dark cycle (12/12 h) conditions and constant temperature (22 
± 2 °C). The diet and water were available at all times. All rats 
were habituated to lab environment for 30 min per day in the 
cage for a week and then valued. 

Surgery 
Ketamine (60 mg/kg) and xylazine (5 mg/kg) anesthetized 
rats were placed in a stereotaxic device (Stoelting, USA). A 
23-gauge stainless steel guide cannula was bilaterally inserted 
into the lateral ventricles. The stereotaxic coordinates were 
derived from Paxinos and Franklin18 atlas (AP = 1.6 mm, ML = ± 
0.8, and DV = 3.4 mm). The cannulas were then attached to the 
skull using two screws and dental acrylic. Rats were recovered 
for 7 days in separate cages before the initiation of experiments.

Drug 
MJ (purity > 95%) was bought from Sigma-Aldrich and sodium 
chloride 0.9% w/v was diluted. 

Microinjection
Microinjections were accomplished with a Hamilton syringe (1 
µL) connected to a needle (27-gauge) via a polyethylene tube. 
Drug infusion was performed at a rate of 1 µL/min/rat/ side. 

Immunofluorescence 
Paraffin blocks through the hypothalamic nuclei were sectioned 
and deparaffinized.  The sections were treated for 30 min for 
antigen retrieval by hydrochloric acid solution (2%). After 
5 min at room temperature, the samples were neutralized by 
incubation in 0.1 M sodium borate buffer, and after 30 min, they 
were washed in phosphate buffer saline (PBS). The primary 
antibody diluted (1 in 100) with PBS was added to the samples, 
and they were then placed in a refrigerator at 2 to 8 °C for 24 h 
to creating a humid environment to prevent tissue drying. After 

24 h, the brain tissue was removed from the refrigerator and 
washed 4 times with PBS for 5 min each time. The secondary 
antibody was then added at a dilution of 1 to 150 and incubated 
in a 37 °C incubator for 90 min in the dark. The sample was 
transferred after 3 washes from the incubator to a dark room, 
we added DAPI (Sigma-D9542). Twenty minutes later, the 
samples were washed with PBS. Glycerol and PBS solution 
were poured on the sample and Orx1R immunoreactivity in each 
section was observed using a fluorescence microscope. Using 
a digital camera the microscopic images (x40) enclosing the 
population of Orx1R immunoreactive neurons in each section 
were taken. 

Rat preference meter device 
A square automated device (60 x 60 cm) with 30 cm high 
black plexiglass was used. The floor was separated into nine 
equal squares. For recording and monitoring the rats’ location 
and food and water consumption, the apparatus was equipped 
with underneath load sensors. The animal was released from 
the central square (square 5) for assaying preference behavior. 
The four middle squares show the preference for the content 
of the nearest container. Also, the corner squares have been 
considered for resting animals. Detailed visual cues that help the 
rat remember taste memory were also assimilated (Figure 1).  

Experimental design
Seventy food-deprived (12 h) rats were randomly divided into ten 
groups (n: 7) as follows: untreated control, sham-operated that 
was cannulated and infused with MJ vehicle (DMSO), and MJ-
treated groups that were cannulated and injected with three 
different doses of MJ (2.5, 5, and 10 µg/rat) in two phases of 
light and dark. Food-related activities were evaluated using an 
automated system. Total food consumption, number of visits, 
time spent, and distance traveled to food ports and zones were 
calculated using software. In the habituation trial, the animals 
were allowed to freely explore the device two days (15 min/day) 
before the test. The rats were released when one container was 
provided by a 30 g normal pellet and allowed food intake within 
a 12-h period (separately in two phases day and night). In the 
habituation test, the animal was discarded from the experiment, 
when it spent more time in a particular zone or did not show 
probing behavior.19

Figure 1. Overlook of the rat preference meter apparatus
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Statistical analysis
All behavioral data were calculated using SPSS software. The 
data are expressed as means ± standard error of the mean. A 
two-way ANOVA was applied for analyzing the data.  P < 0.05 
was considered significant.

RESULTS 
Food consumption
Figure 2 describes the amount of food intake in different groups 
of rats.  Rats treated with MJ showed a significant decrease 
in food consumption in both light and dark phases compared 
with control and sham groups. The lowest amount of food 
consumption in the light and dark phases was indicated in the 
MJ-injected groups at 5 and 10 µg, respectively (p < 0.001). 

Number of visits
There were significant differences between the control and MJ 
(2.5, 5, and 10 µg) groups in the number of total entries to the 
food ports and zones. The MJ groups showed a decrease in 
the number of visits in the light and dark phases (p < 0.001) as 
compared to the control group (Figure 3). In all groups, entries 
to food ports and zones were significantly increased in the dark 
phase compared to the light phase (Figure 3). 

Time spent in the port and zone
Figure 4A presents that the time spent in the food port in the 
MJ-treated groups (5 and 10 µg), was significantly lower than 
that in the control group. The overall amount of time spent in the 
food zone was significantly decreased in MJ-infused rats at 5 
and 10 µg in the light and dark phases (Figure 4B).

Locomotor activity 
The distance traveled in the light phase in the MJ-treated group 
(5 µg) was significantly lower than that in the control group (p 
< 0.05).  In the dark phase, there were increases in traveled 
distance in the groups of rats treated with MJ at 2.5, 5, and 
10 µg as compared to control and sham rats. In addition, the 
distance traveled in the dark phase was significantly increased 
compared with that in the light phase (p < 0.001) (Figure 5). 

IHC
Immunofluorescence staining of Orx1R in hypothalamic nuclei, 
including the ventral arterial thalamic nucleus (VA) and anterior 

hypothalamic arc (AHC), was achieved using antibodies 
directed against Orx1R combined with DAPI nucleus staining. 
Figure 6, panels A and B, display representative sections taken 
from the atlas of  Paxinos and Watson, and immunofluorescence 
of Orx1R-positive cells in the hypothalamic nuclei, respectively, 
in control and MJ (5 µg) treated groups. In Figure 6, panel C, 
the numbers of Orx1R-positive cells in the hypothalamic nuclei 
VA (graph A) and AHC (graph B) were significantly attenuated 
in MJ-treated animals (5 µg) as compared to the control group 
(p < 0.01). 

DISCUSSION 
The data of this study indicated that central administration of MJ 
can attenuate feeding-related behaviors in adult male rats. The 
behavioral effects were accompanied by Orx1R downregulation 
in the hypothalamus of rats. 

Here, an automated open-field box was used to monitor the 
feeding behavior of rats in a 12 h light and 12 h darkness cycle.20 
The acknowledged characteristics included  the amount of food 
consumed, time spent, number of visits,  and distance each rat 
traveled in ports and zones of food containers.19 In line with 
previous studies on nocturnal animals, the highest  nurturing 
activities were found in the darkness  time.21 

This study was the first to report MJ intervention on feeding 
behavior in rats. However, previous studies have emphasized 
the efficiency of MJ in modulating some neuronal processes, 
including learning and memory, anxiety-like behavior, stress, 
and nociception.8,22,23

Figure 2. Effect of MJ (2.5, 5, and 10 µg/rat) on food consumption (in 
grams) in light and dark time (n: 7). Data are presented as mean ± SEM. 

*p < 0.05, **p < 0.01, ***p < 0.001 vs control and sham groups in light phase 

 ###p < 0. 001 vs control and sham groups in the dark phase

Figure 3. Effect of MJ  (2.5, 5, and 10 µg/rat) on the number of visits to 
different ports (a) and zones (b) during light and dark time (n: 7). Data are 
presented as mean ± SEM. *p < 0.05, ***p < 0.001 vs control and the same 
groups, ##p < 0.01, ###p < 0.001
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There are few data available showing MJ involvement in 
feeding behaviors. In rats suffering from arthritis and healthy 
rats, oral administration of MJ for 18 consecutive days 
increased the activity of mitochondrial NADP+-dependent 
enzymes and decreased the levels of glucose flux through 
glycolysis in the liver. Regarding MJ effects to decrease hepatic 
glucokinase activity and glycolysis, it potentially might increase 
mitochondrial ROS production.24,25 

MJ has been shown to have low toxicity in in vivo and in vitro 
studies. It showed selective toxicity against tumor cells with no 
effect on normal human cells.25 Moreover, MJ (100-300 mg/
kg/i.p.) treatment could not exert any acute toxic symptoms 
or death in mice. However, rats treated with MJ at doses of 
400 and 500 mg/kg have shown abnormal behavioral changes 
including ataxia, sedation, and hyperventilation.26 

MJ, as a linolenic acid-derived cyclopentanone phytohormone, 
bears structural similarities with prostaglandins.24 It inhibits 
prostaglandin E, TNF-α, NFκB-mediated production of nitric 
oxide, and interleukin LPS -activated murine macrophages.24,27 
Prostaglandin-induced anorexia is associated with alteration 
of hypothalamic CRF and α-MSH neuronal activities.28 
Arachidonic acid as a prostaglandin precursor has an anorectic 
effect similar to F2α-induced anorexia in rats.29  In this study, 
it is possible to assume that MJ anorexic activity was mediated 
by manipulation of inflammatory cytokine signaling molecules. 

The activities and levels of oxidant/antioxidant  agents  have 
been emphasized  in studies on metabolic challenges and 
energy expenders.30 In this regard, MJ decreased oxidative 
stress activity in the brain.9 In addition,  it increased reactive 
oxygen species generation in human cells.27,31 Furthermore, 
MJ decreased scopolamine pro-oxidative effects in mice.9 In a 
recent study,  MJ  was able to suppress  oxidative stress in rats’ 
hippocampus and prefrontal cortex.32 Therefore, in this study, 
it is supposed that MJ antioxidant value might be involved in 
modulation of feeding behavior of rats.

The localization of Orx1R neurons to the LHA shows their 
involvement in the central circuitry controlling energy 
metabolism.33,34 Here, MJ decreased feeding behavior was 
associated with Orx1R downregulation in the hypothalamic 
nuclei including VA and VHC of rats. This indicates that 
MJ anorexic effects are at least partially medicated with 
interference on Orx1R signaling in the brain. Orexin neurons are 
multifunctional neurons that regulate a variety of physiological  
processes, primarily sleep- and feeding-related  behavior.35,36 
Central infusion of an Orx1R agonist increased  feeding behavior 

Figure 4. Effect of MJ (2.5, 5, and 10 µg/rat) on the time spent in different 
ports and zones during light and dark time (n: 7). Data are presented as 
mean ± SEM.

 *p < 0.05, **p < 0.01, ***p < 0.001 vs control and sham groups in light phase  

#p < 0.05, ###p < 0.001 vs control and sham groups in dark phase

Figure 5. Effect of MJ (2.5, 5, and 10 µg/rat) on the distance traveled by 
rats in various food zones in light and dark time (n: 7).  Data are presented 
as mean ± SEM

*p < 0.05, ***p < 0.001 vs control and sham groups in light phase 

###p < 0.001 vs control and sham groups in the dark phase

Figure 6. Immunostaining for Orx1R in the hypothalamus of rats. Panel A 
shows coronal sections through the ventral arterial thalamic nucleus (VA) 
and anterior hypothalamic arc (AHC) adapted from the atlas of Paxinos and 
Watson. Panel B indicates Orx1R staining in hypothalmic cells (green), DAPI 
staining indicates the position of the nuclei in cells (blue), and the merged 
image of Orx1Rand DAPI of control and MJ (5 µg) groups (n: 4). Panel 
C, statistical comparison of Orx1R immunoreactive cells in the section 
from the VA (graph A) and AHC (graph B) of the hypothalamus. Data are 
presented as mean ± SEM.

**p < 0.01 vs control  
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in rodents and zebrafishes,37,38 whereas an Ox1R selective 
antagonist attenuated food intake in  rats.39 Increased food intake 
and Fos expression in the hypothalamic orexinergic neurons of 
rats after orexin A administration in the nucleus accumbens. 
Moreover, food consumption increased in rats treated with 
orexin.40 On the other hand, peripheral orexin-A injection did 
not significantly affect daily food consumption, meal frequency, 
meal size, and values of total energy expenditure.36 Notably, it 
may indicate that administration of orexin A in the central area 
produces a more powerful effect on increasing food consumption 
than administration in the peripheral area. Although powerful 
evidence shows Orx1R involvement in the regulation of feeding 
behavior, more experiments are still required to elucidate the 
exact mechanism(s) of MJ interplay with Orx1R neurons to 
modulate feeding behavior in the brains of rats. 

CONCLUSION
Overall, the data indicated that central infusion of phytohormone 
MJ induced an anorexic effect in rats.  Moreover, it decreased 
Orx1R expression in hypothalamic nuclei. However, more 
studies are needed to determine the exact mechanism(s) of MJ 
effects on feeding behavior and Orx1R neuron activity in rats.
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